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Abstract

It is widely accepted that a theory of truth for arithmetic should be consistent,
but ω-consistency is less frequently required. This paper argues that ω-consistency
is a highly desirable feature for such theories. The point has already been made for
first-order languages, though the evidence is not entirely conclusive. We show that
in the second-order case the consequence of adopting ω-inconsistent truth theories
for arithmetic is unsatisfiability. In order to bring out this point, well known ω-
inconsistent theories of truth are considered: the revision theory of nearly stable
truth T# and the classical theory of symmetric truth FS. Briefly, we present some
conceptual problems with ω-inconsistent theories, and demonstrate some technical
results that support our criticisms of such theories.

Keywords: theories of truth, second-order languages, ω-inconsistency, unsatisfia-
bility

In this paper we argue that any consistent but ω-inconsistent theory of truth for
arithmetic will fail to be adequate.1 The point has already been made for first-order
systems and is widely known and generally accepted.2 The consequences of adopting
second-order ω-inconsistent theories of truth have not been explored yet. Naturally, the
negative results obtained for the first-order case continue to hold in the second-order
case. However, we will show that in the second-order case things get considerably worse.
We provide some new results and proofs for the well known ω-inconsistent revision theory
of truth T# and classical theory of symmetric truth FS over second-order arithmetic.3

1The expressions ‘truth theory’ and ‘truth system’ will not be used in a technical sense, but will be
taken to be interchangeable and to refer to any semantic or axiomatic formal approach to truth.

2See Leitgeb [13], Barrio [1] and Halbach [10, p. 134].
3We will focus on theories of truth over arithmetic, but applications to other more comprehensive

base theories are presumably intended for these theories. Arithmetic is a convenient and relatively simple
setting, since by fixing some Gödel coding it can express its own syntax. Limiting ourselves to arithmetic
does not harm the generality of our claims: if a theory fails to provide a satisfactory account of truth
for some (crucial) base system, then it is not an attractive theory of truth overall, for the general aim is
lost.
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The article is organized as follows. In section 1 we give some technical preliminaries.
Section 2 is devoted to the introduction of FS and T# over second-order arithmetic.
In 3 we provide unsatisfiability results for both systems and consistency and soundness
results for the latter. We argue that consistency and soundness are not sufficient for an
adequate theory of truth. In section 4 we draw conclusions.

1 Technical preliminaries

Let L2 be the usual second-order language of arithmetic. It contains ¬, ∧ and ∀ as logical
symbols (∨, →, ↔ and ∃ are defined), denumerably many individual variables x1, x2, ...,
denumerably many n-ary set variables Xn

1 , X
n
2 , ..., 0 as its only individual constant, the

monadic function symbol s and finitely many additional symbols for primitive recursive
functions that will be needed. L2T obtains from L2 by adding a new monadic predicate
letter T for truth.

LetN 2 be the intended model of L2, and let ω be its first-order domain. N 2 interprets
the constant 0 with the number 0, s with the successor function and other primitive
recursive function symbols in the intended way. By ‘standard’ or ‘intended model of
L2T ’ we mean any second-order interpretation of this language whose restriction to L2 is
isomorphic to N 2.

Shapiro has recently argued that unintended interpretations of first-order arithmetic
demonstrate that first-order languages are inadequate for axiomatizing arithmetic.4 He
maintains that arithmetic should be formulated in a language whose resources transcend
first-order logic. He proposes that second-order languages provide a suitable framework.
Second-order languages contain not just first-order quantifiers that range over elements
of the domain, but also second-order quantifiers that range over subsets of the domain.
In full second-order logic, it is crucial that these second-order quantifiers range over all
subsets of the domain.

Thus, by ‘second-order interpretation’ or ‘second-order model’ we understand any
classical interpretation of a second-order language as L2 where the second-order domain
is the power set of the first-order domain. If we did not limit ourselves to standard
semantics we would not be really working with second-order languages but just with
multi-sorted first-order ones.

Let PA2 be the usual recursive axiomatization of second-order arithmetic. It contains
the usual axioms of first-order arithmetic plus the second-order formulation of induction
instead of the first-order induction schema. If the principles of arithmetic are formulated
in a second-order language, then Dedekind’s argument goes through and we have a
categorical theory. PA2

T is PA2 formulated in L2T , with full comprehension over L2T -
formulae. We assume N 2 � PA2.

L2T contains a term n̄—the numeral of n—for each n ∈ ω given by n occurrences of s

4For a detailed account see Shapiro [15, pp. 70-76].
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followed by the constant symbol 0. Given any piece of vocabulary A of L2T , pAq denotes
the numeral of the Gödel number of A, given some fixed coding.

The sets of atomic and true atomic sentences of L2 are recursive, as well as the set
of L2T -sentences, the set of first-order variables, the set of second-order variables and the
set of predicate letters. They will be represented in PA2—and thus expressed in N 2—by
At(x), V er(x), Sent(x), var(x), V ar(x) and Pred(x), correspondingly.

The function symbols ¬. , ∧. and ∀. represent recursive functions such that for any
formulae A and B, individual variable v and second-order variable V : ¬. pAq = p¬Aq,
pAq∧. pBq = pA ∧ Bq, ∀. pvqpAq = p∀vAq and ∀. pV qpAq = p∀V Aq. ẋ represents the
function that maps any number n to the code of its numeral n̄. Finally, x(y/z) represents
the substitution function, which applied to the code x of a formula A and the codes y
and z of terms t1 and t2, gives the code of the formula that obtains by replacing t2 in
A with t1; while when applied to the codes y and z of relation symbols or second-order
variables of the same arity R1 and R2 it gives the code of the formula that obtains by
substituting R2 in A with R1. As usual, we write pA(v̇)q as short for pA(v)q(v̇/pvq) to
bind the individual variable v from outside corner quotes.

2 Two ω-inconsistent theories of truth

2.1 The complete and consistent theory of truth FS

FS is an axiomatic theory of truth introduced by Friedman and Sheard [6], and studied
in depth by Halbach [9], [10]. Given a base theory formulated in a classical language
containing a predicate T for truth, FS adds axioms and rules governing T to the base
theory that are consistent with it and intended to turn T into a truth predicate for the
resulting system. FS provides compositionality principles and two rules of introduction
and elimination for T that turn it into a symmetric notion: every provable formula of
the theory will also be provably true and vice versa.

Let L2T be our classical language and PA2
T our base theory. We will also refer to the

latter as ‘FS2
0 ’. FS2

1 is FS2
0 plus the following axioms:

(AT ) ∀x(At(x)→ (Tx↔ V er(x)))

(T¬) ∀x(Sent(x)→ (T¬.x↔ ¬Tx))

(T∧) ∀x∀y(Sent(x) ∧ Sent(y)→ (T (x∧. y)↔ Tx ∧ Ty))

(T∀v) ∀x∀v(Sent(x(0/v)) ∧ var(v)→ (T∀. vx↔ ∀yTx(ẏ/v)))

(T∀V ) ∀x∀p∀v(V ar(v) ∧ Pred(p) ∧ Sent(x(p/v))→ (T∀. vx→ Tx(p/v)))

(T¬), (T∧) and (T∀v) collaborate to establish the compositional character of truth.
One might expect (T∀V ) to do its part, i.e. to state that T commutes with the second-
order universal quantifier too. Such a principle, for instance, would require ∀XA to
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be true whenever each formula that results from replacing all free occurrences of X
in A with a monadic predicate symbol is true. But there cannot be enough predicate
symbols in L2T for each X ⊆ ω, for L2T is a denumerable language; it may happen that
all instances of A(X) are true, while its universal closure is not.5 (T∀V ) states only the
other direction, which is sound: if the universal closure of A(X) is true, then the result
of replacing X with a predicate letter of the same arity is true too.

Finally, let FS2 be FS2
1 plus the following inference rules:

` A ` TpAq
(Nec) (Conec)

` TpAq ` A

FS2 is an ω-inconsistent system, that is, for some formula A(x) with only one free
individual variable x, FS2 ` A(n̄) for each n ∈ ω and, at the same time, FS2 ` ¬∀xA(x).
This is an immediate consequence of a theorem of McGee [14, p. 399].

2.2 The revision theory of truth T#

The revision theory of truth is an attempt to show how a classical language may contain
its own truth predicate by describing and explaining the behavior of this predicate in
ordinary as well as in problematic cases such as those posed by semantic paradoxes.
It was originally introduced by Gupta [7] and Herzberger [12] and fully developed by
Gupta and Belnap [8], the locus classicus on the topic. The revision theory is said to
be a semantic truth theory. But despite working with a class of models for the language
whose truth predicate is to be explained, it does not provide a class of models for the
language but instead provides a class of sentences intended to be the ones that are
categorically assertible.

Let L2T be the language under investigation. The revision theory works as follows.
A partial interpretation of L2T that just leaves T uninterpreted must be fixed to begin
with: the base model. Let N 2 be our base model. Then a hypothetical extension S0 ⊆ ω
for T must be chosen and N 2 expanded to a full second-order model (N 2, S0) of L2T
with the same first-order domain,6 that interprets T with S and every other non-logical
symbol of L2T with the same objects as N 2.

Now a revision process of the chosen hypothesis begins. (N 2, S0) is transformed
into another model (N 2, S1), and this one into another, etc. obtaining a sequence of
interpretations indexed by ordinal numbers of length On.7 We use greek letters α, β, λ

5Adopting a satisfaction predicate instead of a truth predicate could solve the problem, but we would
be forced to move to a third-order language allowing predicates to apply, not only to objects in the
first-order domain of a model, but also to sets in the second-order domain. This would make things
rather more complicated and it does not bear on the aim of our paper.

6And thus the second-order domain remains intact too.
7The class of all ordinal numbers.
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to denote ordinals. Let A be any sentence of L2T . At each successor step α + 1 the
extension of the truth predicate is given by the following rule:

Sα+1 = {A : (N 2, Sα) � A}8 (1)

Only sentences that are true in the previous level fall inside the extension of the
truth predicate. At limit levels things get more complicated. Clearly, results obtained
in previous stages must be collected: those sentences stabilized inside the extension of
T must remain there, and the same for sentences stabilized outside the extension of
the truth predicate. What about unstable sentences? Gupta and Belnap [8] consider
all possible ways of adding some unstable sentences to the extension of T at each limit
stage λ.9 Let A be any sentence of L2T and Γλ any subset of ω:

Sλ = {A : ∃α∀β(α ≤ β < λ⇒ A ∈ Sβ)} ∪ Γλ − {A : ∃α∀β(α ≤ β < λ⇒ A /∈ Sβ)}

Different choices of the initial hypothesis S0 and the extension of Γλ at each limit
stage λ give rise to different revision sequences. To prevent arbitrary choices from slant-
ing the process, every possible sequence with N 2 as base model must be considered.
Sentences that stabilize in some way inside the extension of T in every revision se-
quence will be categorically true and assertible, while the ones that stabilize outside the
extension will be categorically false and their negations will be assertible.

In T# categorical statements must be nearly stable.10 An L-sentence A is nearly-
stably true in a sequence generated by (N 2, S0) if and only if for every stage β after
some stage α there is a natural number n such that for all natural numbers m ≥ n,
A ∈ Sβ+m: and similarly for nearly-stably false sentences. Nearly stable sentences are
allowed to fluctuate all along sequences, but those fluctuations must be confined to finite
regions immediately after limit ordinals.

An L2T -sentence A is valid in T# in N 2—T#
N 2 for short—if and only if it is nearly

stably true in every sequence based on N 2.

Gupta and Belnap [8, p. 225] prove that T# in N—the standard model of first-order
arithmetic—is ω-inconsistent, for it satisfies the hypothesis of McGee’s [14] theorem.

Since T#
N 2 is an extension of that system, it is ω-inconsistent too. In fact, FS2 is nearly-

stably true and, thus, a subtheory of T#
N 2 .11 So T#

N 2 is a system of both compositional

8Actually, codes of sentences rather than sentences themselves belong to each Sα. However, for
readability purposes we will frequently identify expressions with their codes.

9Previously, some alternatives have been explored in the literature by Belnap [2], Gupta [7] and
Herzberger [12], for which Gupta and Belnap’s [8] notion seems to be an improvement. Later, Yaqūb
[16] and Chapuis [3] worked on several refinements.

10Gupta and Belnap present three diverse systems built around different ways a sentence may stabilize
in a sequence, one of which is T#. For a detailed exposition see Gupta and Belnap [8, chapter 6].

11Gupta and Belnap [8, p. 222] prove that first-order versions of (T¬), (T∧) and (T∀v) are valid in
T# in N . The proof for (AT ), (T¬), (T∧), (T∀v) and (T∀V ) in T#

N2 is analogous. Of course, since the

latter entails every true-in-N 2 L2-sentence, it is not axiomatizable. FS2 can only be seen as a partial
axiomatization.
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and symmetric truth too.

3 Some relevant results

Dedekind’s categoricity result states that any structures satisfying the axioms of second-
order arithmetic are isomorphic. Philosophers of mathematics—e.g. Shapiro, Isaac-
son—have repeatedly claimed that this result has significant implications with respect
to the determinacy of our understanding of the natural numbers. In the second-order
case ω-inconsistency entails unsatisfiability. Both T#

N 2 and FS2 lack models.

Theorem 3.1 FS2 has no (full) models.

Proof Suppose for reductio M � FS2. As FS2 is ω-inconsistent, there is a formula
A(x) with exactly one free individual variable x such that M � A(n̄) for each n ∈ ω and
also M � ¬∀xA(x). Since FS2 extends PA2, M � PA2. Then, by categoricity,12 M
must be an ω-model. Thus, M � ∀xA(x) too, which is impossible. �

Corollary 3.2 The set of L2T -sentences that are valid in T#
N 2 has no (full) models.

Proof By theorem 3.1, since FS2 is a subsystem of T#
N 2. �

These are definitively negative results. The lack of models for FS2 implies, in the first
place, that the non-logical vocabulary of FS2 cannot be interpreted in any way. Thus,
FS2 ‘talks’ about nothing, neither true statements nor natural numbers. In a sense,
this turns it into a useless theory. In the second place, the lack of models shows that
this formal system semantically entails everything, it is semantically trivial. One might
feel inclined to believe that as a result of being unsatisfiable FS2 is also inconsistent.
However, as is well known, Theorem 3.1 does not entail that FS2 is inconsistent, for there
is no complete second-order calculus and what happens at the semantic level may carry
no proof-theoretical consequences. In fact, FS2 is consistent and even arithmetically
sound, i.e., it proves only true L2-statements.

Let FS2
n be FS2

1 plus at most n− 1 applications of (Nec) and n− 1 applications of
(Conec). We will show that, for each n ∈ ω, FS2

n has an ω-model.13 Since every theorem
of FS2 must be provable in some FS2

n, FS2 must be consistent and arithmetically sound.
First we will prove an auxiliary lemma.

Lemma 3.3 Let n ∈ ω and A be any formula of L2T . If A is true in the n-th step of
every revision sequence based on N 2 then it is also true at stage n+ 1.

12Dedekind [4] proved a categoricity result for PA2: any model of PA2 is isomorphic to N 2 and, thus,
an ω-model.

13A similar proof for the first-order case can be found in Halbach [10, chap. 14, sec. 1].
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Proof Consider a revision sequence generated by S0. Then, (N 2, Sn) � A. Consider
now the sequence generated by S1 instead. The n-th step of the latter sequence is
(N 2, Sn+1). Thus, (N 2, Sn+1) � A. �

Theorem 3.4 If (N 2, S0) is an extension of N 2 to L2T , (N 2, Sn) � FS2
n.

Proof Since FS2
0 is PA2

T and the latter contains just logical axioms and rules for T ,
any extension of N 2 to L2T satisfies it. Thus, (N 2, S0) � FS2

0 .

We will prove the remaining cases by induction on n with n = 1 as our base step.
By the last paragraph, (N 2, S1) � FS2

0 . We need to show that (AT ), (T¬), (T∧), (T∀v)
and (T∀V ) are also true in (N 2, S1). We will explicitly prove that (T¬) and (T∀V ) are
satisfied. Other cases are treated in a similar way.

Suppose for reductio that (N 2, S1) 2 (T¬). Then (N 2, S1) � Sent(n̄)∧ T¬. n̄∧ T n̄ or
(N 2, S1) � Sent(n̄) ∧ ¬T¬. n̄ ∧ ¬T n̄ for some n ∈ ω. Thus, there is a sentence A of L2T
such that ¬A ∈ S1 and A ∈ S1, or ¬A /∈ S1 and A /∈ S1. By (1), we have that either
(N 2, S0) � ¬A ∧A or (N 2, S0) 2 ¬A ∨A, which is absurd.

Similarly, assume that (N 2, S1) 2 (T∀V ). Thus, (N 2, S1) � V ar(k̄) ∧ Pred(m̄) ∧
Sent(n̄(m̄/k̄)) ∧ T∀. k̄n̄ ∧ ¬T n̄(m̄/k̄) for some k,m, n ∈ ω. Then, there is a second-
order variable V , predicate symbol P of the same arity as V and a formula A with
possibly V as its only free variable such that ∀V A ∈ S1 and A(P ) /∈ S1. By (1),
(N 2, S0) � ∀V A ∧ ¬A(P ), which is impossible.

Now suppose that (N 2, Sn) � FS2
n, i.e., that FS2

n is true in the n-th step of every
revision sequence based on N 2. By (3.3), (N 2, Sn+1) � FS2

n too. So (N 2, Sn+1) validates
n − 1 applications of (Nec) and (Conec). Finally we need to prove that (N 2, Sn+1)
validates one more application of each rule. Let A be an L2T -sentence such that FS2

n ` A.
By the inductive hypothesis, (N 2, Sn) � A. By (1), A ∈ Sn+1, that is, (N 2, Sn+1) �
TpAq. Now let FS2

n ` TpAq. Then, (N 2, Sn+1) � TpAq, i.e., A ∈ Sn+1. By (1),
(N 2, Sn) � A and, by (3.3), (N 2, Sn+1) � A. Therefore, (N 2, Sn) � FS2

n+1. �

So each FS2
n is true at stage n of every revision sequence for L2T based on N 2, no

matter what initial hypothesis we have chosen.

Corollary 3.5 FS2 is consistent.

Corollary 3.6 FS2 is arithmetically sound.

While theorem 3.1 shows that FS2 is trivial from a semantic standpoint, corollary
3.5 keeps it safe from proof-theoretic trivialization and corollary 3.6 from arithmetical
falsity. The failure of completeness for second-order systems allows these differences
between the semantics and the calculus. Nonetheless, consistency and soundness are not
enough; ω-consistency is necessary for a theory of truth.
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Adding a truth predicate to some base theory should not interfere with the ontology
of that theory. First, it does not make much sense to talk about the truth or falsity of
uninterpreted formulae. We want sentences such as ‘¬∃x(s(x) = 0)’ to come out true in
our truth theories because they say something true about natural numbers, because they
are true of the standard interpretation of the language we are working with. Although
FS2 entails many of these sentences and also their truth predication, it cannot be seen
as expressing the truth of a sentence that concerns natural numbers (or anything at all),
since FS2 can be no longer seen as saying something true about ω.

Second, one might expect a truth theory to provide a better understanding of the
standard interpretation of the base language. But despite being arithmetically sound
and proving more true-in-N 2 formulae than PA2, including the Gödel sentence and the
consistency statement for PA2, FS2 does not provide a better characterization of N 2

since it is not true in it.

Then, as a consequence of theorem 3.1—which is itself a consequence of the ω-
inconsistency of FS2—the truth predicate of FS2 is not a legitimate truth predicate for
arithmetic, not even a partial one.

A good theory of truth over arithmetic should not only be arithmetically sound
and entail as many intuitive truth principles as possible, but it should also not imply
counterintuitive statements involving truth. Consider the following L2T -sentence:

(RFLFS2) ∀x(BewFS2(x)→ Tx)

where BewFS2 is the provability predicate for FS2, weakly representable in this system.
RFLFS2 is a global reflection principle for FS2: it states that all FS2-theorems are
true (as long as T is capable of expressing truth, at least partially). This principle seems
desirable to anyone embracing FS2, for it establishes its soundness. Moreover, it appears
to be true according to FS2 itself since, by (Nec), T applies to every theorem of FS2.

However, FS2 proves the negation and falsity of RFLFS2 .14 ¬RFLFS2 is a highly
counterintuitive principle but—worst of all—it is strictly false. Although FS2 does not
prove any arithmetically false statement, it entails incorrect truth-theoretical principles.
FS2 is arithmetically but not truth-theoretically sound.

As a consequence, supporters of FS2 must regard their own theory as unsound, for
they fall into the following dilemma: they commit themselves either to the falsity or to
the truth of RFLFS2 . The first alternative seems reasonable, for ¬RFLFS is entailed
both by FS2 and T#

N 2 . But this formula states the unsoundness of FS2. The second
choice also seems attractive, since RFLFS2 states the soundness of FS2. However, since
FS2 implies the negation of that principle, supporters are forced to admit that their
theories entail falsities and, hence, are unsound.

14See Halbach and Horsten [11] for a proof for the first-order case. The second-order case is immediate,
for FS2 includes its first-order counterpart and the negation of the reflection principle for the latter
system entails ¬RFLFS2 .
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Naturally, whatever is provable in FS2 must be provable by a finite number of
applications of (Nec) and (Conec). As a result, every FS2-theorem is a theorem of an
ω-consistent fragment of FS2. ω-inconsistency is not the reason why FS2 proves the
negation of its own reflection principle, but rather why this negation is false according
to the theory itself. For while a finiteness argument goes through and, thus, ¬RFLFS2

is provable in some ω-consistent fragment of FS2, RFLFS2 only becomes true—and
its negation false—when applications of (Nec) are unrestrained. In fact, FS2 entails
TpAq whenever it entails BewFS2(pAq) for each L2T -sentence A and, at the same time,
¬∀x(BewFS2(x)→ Tx) is a theorem of FS2.

Regarding T#
N 2 , things get murkier. This truth theory provides a class of L2T -

sentences that are supposed to be correctly assertible. Gupta and Belnap [8, p. 219]
show that this set is closed under classical logical consequence, for logical truths are true
and logical rules are sound in every model, including all extensions of N 2. Since the set
of T#

N 2-valid sentences lacks models we have that T#
N 2 entails every L2T -statement. In

theorem 3.2 we show that T# is fully incapable of dealing with truth for second-order
arithmetic. According to T# every sentence of L2T is correctly assertible, and so we get
absolute triviality.

4 Conclusions

As is widely accepted, ω-inconsistent theories of truth for first-order arithmetic are unde-
sirable, for they do not succeed in expressing genuine truth. Results for the second-order
case are worse and completely decisive. Higher-order resources with standard semantics
ban the existence of non-standard models. Thus, ω-inconsistency entails unsatisfiable
theories of truth, i.e., semantically trivial systems. While FS2, by an incompleteness
result, avoids trivialization at the proof-theoretical level, T#

N 2 has the further flaw of
entailing every sentence, rendering it completely useless as a semantic theory of truth.

In sum, ω-consistency is a highly desirable feature for a theory intended to provide
a truth predicate for first-order arithmetic; but it becomes indispensable if the aim is to
give a truth predicate for second-order arithmetic.
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